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Abstract

The performance of the independent modal space control (IMSC) algorithm for structural vibration control
is examined in this paper. Both the theoretical analysis and numerical simulation show that, for a multi-degree-
of-freedom system, the modal control forces may increase the contributions of the vibration of higher modes
(uncontrolled modes) to the system response if the IMSC algorithm is used to design a structural control
system. Therefore, the responses of the controlled structure may be underestimated if the effects of control
forces on the higher modes are not considered in the response analysis. A new control algorithm—modified
independent modal space control (MIMSC) algorithm is proposed in this paper for eliminating the effect of
modal control force on the uncontrolled modes. Numerical example shows that the structural responses can be
effectively reduced when control system design is carried out based on the proposed algorithm. By comparing
the simulated results obtained by the IMSC and MIMSC algorithms, it is found that, in order to achieve the
same control objective, the proposed algorithm is more effective than IMSC since the modal control forces do
not have any effect on the uncontrolled modes. In order to verify the effectiveness of the proposed algorithm, a
practical example—active control design of UCLA Math-Science Building is presented and discussed.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

In recent years, great progress has been achieved in the field of active structural vibration
control. A variety of control algorithms have been developed specifically for civil engineering
structures [1–6] and significant full-scale active control systems have been installed in actual
structures and have performed well for the purposes intended [7,8]. While significant progress has
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been made, the true potential of active vibration control of structures has not been fully exploited.
In this paper, the performance of the IMSC method, which is receiving intense interest in the
control of multi-degree-of-freedom (m.d.o.f.) systems and has been successively applied to a wide
variety of practical problems, is examined. Generally speaking, the IMSC method combines the
modal decomposition with classical linear quadratic regulator (LQR) control law. The control gain
for each of the modal controls can be found by solving a second order Riccati equation. The
computational work can be reduced greatly if the IMSC algorithm is used to design the control
system since the design is carried out based on the lower frequency modes. However, a recent study
[9] demonstrates that, when control design is conducted based on the IMSC algorithm, the control
forces may increase the contribution of the higher modes (uncontrolled modes) to the system
responses. The purpose of this paper is to examine the effects of control forces on the uncontrolled
modes and to propose an efficient algorithm to overcome the drawbacks of the IMSC algorithm.
The work presented in this paper contains two parts: firstly, by means of a theoretical analysis

and a numerical simulation study, the effects of the control forces on the uncontrolled modes are
investigated; secondly, a new control algorithm—modified independent modal space control
(MIMSC) algorithm is proposed. Since there is no effect of the control forces on the uncontrolled
modes, the control system designed by the proposed algorithm has higher control efficiency than
those designed based on the IMSC algorithm. The results of the numerical simulation indicate
that the implementation of the new control algorithm is simple and convenient, and its design can
be carried out following the same procedure as in the IMSC case.

2. Independent modal space control algorithm

The vibration equation of a controlled MDOF system is

M.zðtÞ þ C’zðtÞ þ KzðtÞ ¼ DuðtÞ þ FðtÞ; ð1Þ

where M; C; K are n � n mass, damping and stiffness matrices, respectively; zðtÞ ¼ ½z1; z2;y; zn�T

is an n-dimensional vector of displacements; uðtÞ is an m-dimensional control-force vector; D is an
n � m matrix representing the locations of the control forces; FðtÞ ¼ ½f1; f2;y; fn�T is an n-
dimensional external loading vector; and the superscript T denotes vector or matrix transpose.
Let zðtÞ ¼ UqðtÞ; where U is a modal matrix and q is the vector of modal displacement. Then

Eq. (1) can be rewritten in the following decoupled form:

.qðtÞ þ diagð2xjojÞ’qðtÞ þ diagðo2
j ÞqðtÞ ¼ VðtÞ þWðtÞ; ð2Þ

where

diagð2xjojÞ ¼ ðMnÞ�1Cn; diagðo2
j Þ ¼ ðMnÞ�1Kn; ð3aÞ

VðtÞ ¼ ðMnÞ�1UTDuðtÞ ¼ LuðtÞ; WðtÞ ¼ ðMnÞ�1UTFðtÞ ¼ NFðtÞ; ð3bÞ

Mn ¼ UTMU ¼ diagðmn

j Þ; Cn ¼ UTCU ¼ diagðcnj Þ; ð3cÞ

Kn ¼ UTKU ¼ diagðkn

j Þ; L ¼ ðMnÞ�1UTD; ð3dÞ

N ¼ ðMnÞ�1UT: ð3eÞ
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For practical considerations, the design of a structural control system is usually carried out based
on the first R modes, referred to as the reduced order system. Then Eq. (2) can be rewritten as

.qc þ diagð2xjcojcÞ’qcðtÞ þ diagðo2
jcÞqcðtÞ ¼ VcðtÞ þWcðtÞ ðj ¼ 1; 2;y;RÞ; ð4Þ

where

VcðtÞ ¼ LcuðtÞ; ð5aÞ

WcðtÞ ¼ NcFðtÞ: ð5bÞ

In Eq. (4), qc is the controlled modal displacement vector of the system, its dimension is, in
general, much smaller than that of qðtÞ: In the modal space, the control vector VcðtÞ is related to
the physical control force vector uðtÞ by Eq. (5a), and the modal loading vector Wc is associated
with the external loading by Eq. (5b). Lc ¼ ðLÞR�m is an R � m sub-matrix of L and Nc ¼ ðNÞR�n

is an R � n sub-matrix of N:
The control force vector in physical space can be simply found by Eq. (5a) as

uðtÞ ¼ LþVcðtÞ; ð6Þ

where Lþ is a pseudo-inverse matrix of Lc

Lþ ¼ ðLT
c LcÞ

�1LT
c : ð7Þ

Eq. (4) is usually a set of coupled equations since the modal control forces VcðtÞ depend on all the
controlled modes. To avoid re-coupling a decoupled control system, the modal control vector
VcðtÞ can be designated as

VcðtÞ ¼ �G1qcðtÞ �G2 ’qcðtÞ; ð8Þ

where matrices G1 ¼ diagðg1jÞ and G2 ¼ diagðg2jÞ ðj ¼ 1; 2;y;RÞ:
Then, all equations in Eq. (4) are completely independent. The control algorithms based on this

design procedure have been referred to as control modal synthesis or, more commonly, the IMSC
[10,11].
By means of the classical LQR control law, the feedback gain matrices G1 and G2 can be

obtained by minimizing a quadratic performance index J if Eq. (4) is expressed as a state-space
equation form [12].

3. Effects of control forces on uncontrolled modes

The IMSC algorithm can considerably simplify the structural control design since it shifts the
problem from a coupled higher order system to a lower order decoupled system. It is particularly
attractive for the cases in which only a few critical modes need to be controlled. However, the
response of the controlled system may be underestimated if the effects of the modal control forces
on the uncontrolled modes are not considered in the design. In some cases, the modal control
forces may significantly increase the contributions of uncontrolled modes to the vibration of the
system, especially for a flexible structure, in which the contributions of its higher modes cannot be
ignored. This statement can be verified as follows. The equations for uncontrolled modes are

.qr þ diagð2xjrojrÞ’qrðtÞ þ diagðo2
jrÞqrðtÞ ¼ VrðtÞ þWrðtÞ ðj ¼ R þ 1;R þ 2;y; nÞ; ð9Þ
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where qr is uncontrolled mode co-ordinate, and

VrðtÞ ¼ LruðtÞ; WrðtÞ ¼ NrFðtÞ: ð10Þ

Using Eqs. (6) and (8), one obtains

VrðtÞ ¼ LrL
þVcðtÞ ¼ �LrL

þGQðtÞ; ð11Þ

where Lr ¼ ðLÞðn�RÞ�m is a ðn � RÞ � m sub-matrix of L and

G ¼ ½G1;G2�; QðtÞ ¼ ½qcðtÞ; ’qcðtÞ�
T: ð12Þ

Eq. (9) shows that the modal control forces play the same role as the external excitation to the
uncontrolled modes, which may amplify the contributions of the uncontrolled modes to the
system’s vibration. Meanwhile, the response of the system may be underestimated if such
contributions are not considered in response analysis.
By investigating the responses of the uncontrolled modes induced by control forces and external

excitations, the effects of the modal control forces on the uncontrolled modes can be easily
assessed. For simplicity, suppose only the first mode is controlled and the number of control
forces is equal to the number of the d.o.f., i.e., R ¼ 1 and m ¼ n: Thus, D is a unit matrix.
Rewrite Eq. (4) as

’Y ¼ AYþ B1Vc1ðtÞ þD1Wc1ðtÞ; ð13Þ

where Y ¼ ðq1; ’q1Þ
T and

A ¼
0 1

�o2
1 �2x1o1

" #
; B1 ¼ D1 ¼ ½ 0 1 �T; ð14Þ

the control forces uðtÞ ¼ ½u1; u2;y; un�T are related to Vc1 by Vc1 ¼ ð
Pn

j¼1 jj;1ujÞ=m	
1; the external

excitation vector FðtÞ ¼ ½f1; f2;y; fn�T has the relationship with Wc1 by Ec1 ¼ ð
Pn

j¼1 jj;1fjÞ=m	
1;

here jj;1 is the jth element of the fundamental mode; x1 and o1 are the critical damping ratio and
the circular natural frequency of the first mode, respectively.
The modal control force Vc1 can be determined by the classical LQR control law and the

quadratic performance index J is

J ¼
Z tf

0

ðYTQYþ RV 2
c1Þ dt; ð15Þ

where Q is a positive definite or a semi-positive definite weight matrix, and R > 0: Minimizing J

gives the modal control force Vc1 as

Vc1 ¼ �
1

R
BT
1PY: ð16Þ

The matrix P satisfies the following Riccati matrix equation if the control time tf is long
enough:

PAþ ATP�
1

R
PB1B

T
1PþQ ¼ 0: ð17Þ
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Let weight matrix Q be diagðQjÞ; and rewrite P as

P ¼
p1 p2

p2 p3

" #
;

the modal control force Vc1 is given by

Vc1ðtÞ ¼ �
p2

R
q1ðtÞ �

p3

R
’q1ðtÞ; ð18Þ

and the solutions of Eq. (17) are

p1 ¼ 2x1o1p2 þ o2
1p3 þ

p2p3

R
; ð19aÞ

p2 ¼ o2
1R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

Q1

Ro4
1

s
� 1

 !
; ð19bÞ

p3 ¼ 2x1o1R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

2p2 þ Q2

ð2x1o1Þ
2R

s
� 1

 !
: ð19cÞ

Then the equation of the controlled mode (first mode), and the modal control force Vc1 are

.q1ðtÞ þ 2x1o1ð1þ bÞ ’q1ðtÞ þ o2
1ð1þ gÞq1ðtÞ ¼ Wc1ðtÞ; ð20Þ

Vc1ðtÞ ¼ �go2
1q1ðtÞ � 2bx1o1 ’q1ðtÞ; ð21Þ

where

b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

2p2 þ Q2

ð2x1o1Þ
2R

s
� 1 > 0; g ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

Q1

o4
1R

s
� 1 > 0: ð22Þ

It can be seen, from Eq. (20), that the modal control force Vc1 provides the active modal damping
and stiffness to the first mode.
Suppose that the power spectral density (PSD) matrix of excitation is SF ðoÞ; the PSD of the

modal excitation of the fundamental mode is

SWc1
ðoÞ ¼

1

mn
1

	 
2

jT
1 SF ðoÞj1; ð23Þ

where j1 is the first mode shape vector.
The variance and the PSD of the modal control force are

s2Vc1
¼ g2o4

1s
2
q1
þ 4b2x21o

2
1s

2
’q1
; ð24aÞ

SVc1
ðoÞ ¼ ðg2o4

1 þ 4b2x21o
2
1o

2ÞjH1ðoÞj2SWc1
ðoÞ; ð24bÞ

where jH1ðoÞj2 ¼ 1=½ðo2 � o2
1ð1þ gÞ2Þ2 þ ð2x1o1oð1þ bÞÞ2�; s2q1 and s2’q1 are the variances of the

modal displacement and the modal velocity of the fundamental mode, respectively.
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Substituting Eq. (11) into Eq. (9) yields

.qiðtÞ þ 2xioi ’qiðtÞ þ o2
i qiðtÞ ¼ �liVc1ðtÞ þ wiðtÞ ði ¼ 2; 3;y; nÞ; ð25Þ

where

li ¼
mn

1

mn
i

jT
i ðj1j

T
1 Þ

�1j1; ð26aÞ

wiðtÞ ¼
1

mn
i

Xn

j¼1

jj;ifj; ð26bÞ

Swi
ðoÞ ¼

1

ðmn
i Þ

2
jT

i SF ðoÞji ði ¼ 2; 3;y; nÞ: ð26cÞ

The PSD of the response of the ith ði ¼ 2; 3;y; nÞ mode is

Sqi
ðoÞ ¼ jHiðoÞj2½l

2
i SVc1

ðoÞ þ Seri
ðoÞ�; ð27Þ

where jHiðoÞj2 ¼ 1=½ðo2 � o2
i Þ

2 þ ð2xioioÞ
2�:

It can be seen from Eq. (27) that the modal control force may intensify the vibration of the
uncontrolled modes. If the external excitation is a Gaussian white noise with spectral intensity S0;
Eqs. (24b) and (26c) can be simplified as follows.
The PSD of the modal control force is

SVc1
ðoÞ ¼ ðg2o4

1 þ 4b2x21o
2
1o

2ÞjH1ðoÞj2mS0: ð28aÞ

The PSD of the modal excitation is

Swi
ðoÞ ¼

jT
i ji

ðmn
i Þ

2
S0 ði ¼ 2; 3;y; nÞ: ð28bÞ

Therefore, the variances of responses of the ith ði ¼ 2; 3;y; nÞ mode corresponding to the modal
control forces and external excitations are:

s2qi
jVc1

¼
Z

N

�N

jH1ðoÞj2jHiðoÞj2ðg2o4
1 þ 4x1o

2
1o

2Þl2i mS0; ð29aÞ

s2’qi
jVc1

¼
Z

N

�N

o2jH1ðoÞj2jHiðoÞj2ðg2o4
1 þ 4x1o

2
1o

2Þl2i mS0; ð29bÞ

s2.qi
jVc1

¼
Z

N

�N

o4jH1ðoÞj2jHiðoÞj2ðg2o4
1 þ 4x1o

2
1o

2Þl2i mS0; ð29cÞ

s2qi
jeri

¼
pmiS0

2xio3
i

; ð29dÞ

s2’qi
jeri

¼
pmiS0

2xioi

; ð29eÞ

s2.qi
jeri

¼
poimiS0

2xi

; ð29fÞ
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where

mi ¼

Pn
j¼1 j

2
j;i

ðmn
i Þ

2
:

The effects of the modal control forces on the uncontrolled modes can be easily assessed by
Eqs. (29). The quantitative descriptions of these effects are given by the following numerical
example, in which the performance of a six-story building subjected to the white noise base
excitation is examined.

4. Numerical example 1

A six-story building is modelled as a m.d.o.f. system shown in Fig. 1. The lumped mass at each
floor is, mi ¼ m ¼ 3:456� 103 kg ði ¼ 1; 2;y; 6Þ and inter-story stiffness is ki ¼ k ¼ 3:405�
105 kN=m: The values of the critical damping ratio are x1 ¼ 1%; x2 ¼ 1:5%; x3 ¼ 2%; x4 ¼
2:5%; x5 ¼ 3%; x6 ¼ 3:5%; and the values of circular natural frequencies, modal mass and
modal stiffness are given in Appendix A.
The base excitation is modeled as a band-limited Gaussian white noise with intensity S0 ¼

0:0159 m2=s3 and bandwidth¼10Hz. The following algorithm proposed by Shinozuka [13] is used
to generate the time histories of the base excitation.

f ðtÞ ¼
XN

k¼1

ak cosðokt þ fkÞ; ð30Þ

Fig. 1. The analytical model of the six-story building.

J.Q. Fang et al. / Journal of Sound and Vibration 261 (2003) 421–441 427



where N is the number of intervals along the frequency axis and

Do ¼ ðou � olÞ=N;

ok ¼ ol þ ðki þ 1=2ÞDo ðk ¼ 1; 2;y;NÞ;

fk is independent random phase uniformly distributed between 0 and 2p; ak is independent
Gaussian random variable with ð0;s2kÞ; in which s2k ¼ 4S0Do ðk ¼ 1; 2;y;NÞ:
Fig. 2 shows the simulated time histories of the base excitation based on the above algorithm.
Assume that

Q ¼
57:2 0

0 1

" #
; R ¼ 2:0;

and the control design is carried out based on the first mode, Eq. (22) gives b ¼ 5:6881; g ¼
0:0044; and the modal control force Vc1 is

Vc1 ¼ �0:2517q1 � 0:8606 ’q1:

The variances of responses of the second mode including and not including the effects of the
modal control forces are calculated, respectively, as follows.

s2q2 jwr1
¼ 2:8227� 10�6; s2q2 jwr1þVc1

¼ 3:3262� 10�6;

s2’q2 jwr1
¼ 9:8334� 10�4; s2’q2 jwr1þVc1

¼ 0:0011;

s2.q2 jwr1
¼ 0:5448; s2.q2 jwr1þVc1

¼ 0:5687:

It can be seen from the above results that, due to the effects of the modal control force, the
variances of modal displacement, modal velocity and modal acceleration increase 17.84%,
11.86% and 4.22%, respectively. This suggests that the effects of the modal control force on the
uncontrolled modes should be examined carefully when the control design is carried out based on
the IMSC algorithm, especially for a flexible structure in which the vibration is dominated by
several modes.

Fig. 2. Simulated acceleration of ground motion.
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5. Modified independent modal space control algorithm

As discussed above, the responses of the uncontrolled modes can be amplified by the control
forces using the IMSC control method. In this case, the contributions of the uncontrolled modes
may be significant and the structural response may be underestimated if such contributions are
ignored in the response analysis. It will be shown that the control algorithm, modified
independent modal space control (MIMSC), will eliminate the effects of the modal control forces
on the uncontrolled modes, so that the control system will be more effective than that based on
the IMSC.
Rewrite Eq. (2) as follows:

M	 .qðtÞ þ C	 ’qðtÞ þ K	qðtÞ ¼ UTDuðtÞ þ UTFðtÞ ð31Þ

or

M	 .qðtÞ þ C	 ’qðtÞ þ K	qðtÞ ¼ HuðtÞ þ EðtÞ: ð31aÞ

Suppose the number of the controlled modes is R; matrices H and E can be rewritten as
partition form:

H ¼ UTD ¼
ðHcÞR�m

ðHrÞðn�RÞ�m

" #
; E ¼ UTFðtÞ ¼

ðEcÞR�1

ðErÞðn�RÞ�1

" #
:

Therefore, the equations for the controlled modes and uncontrolled modes are:
For the controlled modes:

Mn

c .qcðtÞ þ Cn

c ’qðtÞ þ Kn

cqcðtÞ ¼ HcuðtÞ þ EcðtÞ: ð32aÞ

For the uncontrolled modes:

Mn

r .qrðtÞ þ Cn

r ’qðtÞ þ Kn

r qrðtÞ ¼ HruðtÞ þ ErðtÞ; ð32bÞ

where

Hc ¼ ðUTDÞR�m; Hr ¼ ðUTDÞðn�RÞ�m; ð33aÞ
Mn

c ¼ ðMnÞR�R; Mn

r ¼ ðMnÞðn�RÞ�ðn�RÞ; ð33bÞ

Cn

c ¼ ðMnÞðR�RÞ; Cn

r ¼ ðCnÞðn�RÞ�ðn�RÞ; ð33cÞ

Kn

c ¼ ðKnÞðR�RÞ; Kn

r ¼ ðKnÞðn�RÞ�ðn�RÞ; ð33dÞ

in which ðAÞs�t is a s � t sub-matrix of matrix A:
Let

uðtÞ ¼ �G1qc �G2 ’qc: ð34Þ

Eq. (32) are expressed as
For the controlled modes:

Mn

c .qcðtÞ þ ðCn

c þHcG2Þ’qcðtÞ þ ðKn

c þHcG1ÞqcðtÞ ¼ EcðtÞ: ð35aÞ
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For the uncontrolled modes:

Mn

r .qrðtÞ þ Cn

r ’qrðtÞ þ Kn

r qrðtÞ ¼ �Hr½G1qcðtÞ þG2 ’qcðtÞ� þ ErðtÞ: ð35bÞ

Consider the following conditions:

1. Both HcG1 and HcG2 are diagonal matrices.
2. HrG1 ¼ HrG2 ¼ 0:

It is obvious that Eq. (35a) is a set of decoupled equations and no effects of the control forces
on the uncontrolled modes exist in Eq. (35b) if the above two conditions are satisfied.
Rewrite conditions 1 and 2 in the following forms:

HG1 ¼

s1

&

sR

0 ? 0

? ? ?

0 ? 0

2
6666666664

3
7777777775
¼

s

0

" #
n�R

; HG2 ¼

d1

&

dR

0 ? 0

? ? ?

0 ? 0

2
6666666664

3
7777777775
¼

d

0

" #
n�R

; ð36Þ

where

H ¼
Hc

Hr

" #
:

Eq. (36) shows that the feedback gain matrices can be obtained if the diagonal matrices s and d
are determined based on the same algorithm.
Suppose that the number of control forces m is equal to n; i.e., equal to the number of d.o.f. of

the system, then H ¼ UT (note that the condition mXR must be satisfied in this algorithm. Refer
to Appendix B). Without loss of generality, it is assumed that G1 ¼MUF1 and G2 ¼MUF2: Left
multiplying UT to G1 and G2 and using the orthogonal property of the mode shapes, yields

F1 ¼ ½Mn��1 s

0

" #
; F2 ¼ ½Mn��1 d

0

" #
: ð37Þ

Then

G1 ¼MUc½Mn

c �
�1s; G2 ¼MUc½Mn

c �
�1d; ð38Þ

where Uc ¼ ðUÞn�R; i.e., Uc is a matrix constituted by the first R mode shapes.
Condition 2 is automatically satisfied, since

HrG1 ¼ UT
r MUc½Mn

c �
�1s ¼ 0; HrG2 ¼ UT

r MUc½Mn

c �
�1d ¼ 0: ð39Þ

The matrices G1 ¼ ðgijÞn�R and G2 ¼ ð %gijÞn�R can be expressed as

gij ¼
miji;jsj

mn
j

; %gij ¼
miji;jdj

mn
j

ði ¼ 1; 2;y; n; j ¼ 1; 2;y;RÞ: ð40Þ
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It is therefore, quite clear that the feedback gain matrices can be obtained if the diagonal
matrices s and d are known. The LQR control law is used to determine matrices s and d as follows.
Rewrite Eq. (32a) as a state-space equation

’Y ¼ AYþDEcðtÞ þ BuðtÞ; ð41Þ

where Y ¼ ½qc; ’qc�
T and

A ¼
0 I

�diagðo2
j Þ �diagð2xjojÞ

" #
; D ¼

0

½Mn

c �
�1

" #
; B ¼

0

½Mn

c �
�1UT

c

" #
:

The quadratic performance index J is

J ¼
Z tf

0

ðYTQYþ uTRuÞ dt: ð42Þ

The weight matrix Q is chosen as the form

Q ¼
Q1 0

0 Q2

" #
;

in which sub-matrices Q1 and Q2 are diagonal matrices. The control force vector uðtÞ is given by

uðtÞ ¼ �R�1BTPY: ð43Þ

P satisfies the following Riccati matrix equation:

PAþ ATP� PBR�1BTPþQ ¼ 0: ð44Þ

Rewrite P as partition form

P ¼
P11 P21

P21 P22

" #
;

then the sub-matrices P21 and P22 satisfy the following equations:

P21½Mn

c �
�1Kn

c þ ½Mn

c �
�1Kn

cP21 þ P21½Mn

c �
�1UT

cR
�1Uc½Mn

c �
�1P21 �Q1 ¼ 0; ð45aÞ

P22½Mn

c �
�1Cn

c þ ½Mn

c �
�1Cn

cP22 þ P22½Mn

c �
�1UT

cR
�1Uc½Mn

c �
�1P22 � 2P21 �Q2 ¼ 0: ð45bÞ

The control force vector is given by

uðtÞ ¼ �R�1Uc½Mn

c �
�1P21qc � R�1Uc½Mn

c �
�1P22 ’qc: ð46Þ

By the comparison of Eq. (38) with Eq. (46), one has

MUc½Mn

c �
�1s ¼ R�1Uc½Mn

c �
�1P21; ð47aÞ

MUc½Mn

c �
�1d ¼ R�1Uc½Mn

c �
�1P22: ð47bÞ
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If the weight matrix R is chosen as

R�1 ¼
1

R1
M; ð48Þ

and substituting Eq. (48) into Eq. (47), one has

P21 ¼ R1s; P22 ¼ R1d; ð49Þ

where R1 is a constant that can be selected according to the control conditions.
Therefore, the solutions of Eq. (45) are found as

sj ¼ kn

j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

Q1jm
n
j

R1ðkn
j Þ

2

s
� 1

 !
; ð50aÞ

dj ¼ cnj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

Ljm
n
j

R1ðcnj Þ
2

s
� 1

 !
; ð50bÞ

where

Lj ¼
mn

j Q1j

2kn
j þ sj

þ Q2j ðj ¼ 1; 2;y;RÞ: ð51Þ

By substituting Eq. (50) into Eq. (40), the feedback gain matrices G1 and G2 can be obtained.

6. Numerical example 2

The structural model examined in the numerical example 1 is used herein to illustrate the
effectiveness of the proposed algorithm, and to study the effects of the control forces on the
uncontrolled modes. The same assumptions are made as those given in the numerical example 1,
i.e., m ¼ n; R ¼ 1: The weight matrices Q and R are chosen as

Q ¼
105 0

0 105

" #
; R ¼ 0:1M�1: ð52Þ

Substituting Q1 ¼ Q2 ¼ 105 and R1 ¼ 0:1 into Eq. (50), one obtains s1 ¼ 8:725� 103 and d1 ¼
5:396� 105: Then, the feedback gain matrices G1 G2 can be determined by Eq. (40) as G1 ¼
½1158; 2249; 3209; 3983; 4525; 4805�T and G2 ¼ ½71610; 13912; 19848; 24634; 27991; 29717�T:
Table 1 lists the maximum responses of the top floor. It can be seen from Table 1 that

the displacement, velocity and acceleration responses of the top floor are reduced by 62.2%,
63.6% and 51%, respectively, when the structure is controlled based on the proposed algorithm.
Figs. 3, 4 and 5 show the comparison of the responses corresponding to the controlled and
uncontrolled structure. These figures show that the responses of the top floor have been
significantly reduced.
In order to investigate the effects of the control forces on the uncontrolled modes, the

IMSC algorithm is also used to control the same structure. Figs. 6, 7 and 8 show the structural
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Fig. 3. Acceleration response of the top floor.

Fig. 4. Velocity response of the top floor.

Fig. 5. Displacement response of the top floor.

Table 1

Responses of the top floor and the control force

Max. disp Max. vel. Max. acc. r.m.s. disp r.m.s. vel. r.m.s. acc.

(cm) (cm/s) (cm/s2) (cm) (cm/s) (cm/s2)

Uncontrolled 8.88 67.60 613 5.20 38.54 314

Controlled 3.36 24.62 300 1.97 14.28 161

Maximum control force (absolute values)

Contr. no u1 u2 u3 u4 u5 u6

Contr. force (KN) 34.12 66.28 94.57 117.74 133.36 141.59
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responses contributed by the uncontrolled modes. From these figures, it can be seen that, for
the IMSC algorithm, the control forces amplifies the contributions of the higher uncontrolled
modes to the responses, and the MIMSC algorithm does not make any contribution to
the responses of the higher uncontrolled modes. The acceleration, velocity and displacement
responses are increased by 16.3%, 13.2%, and 12.1%, respectively, comparing with those of
the MIMSC algorithm. Obviously, for a structure with higher participating coefficients of
higher modes, the excitations of the modal control forces to the uncontrolled modes should
be examined carefully when the IMSC is used as control algorithm. For clarity, responses with
only 5 s duration are shown in Figs. 6–8.

Fig. 6. The contributions of the higher uncontrolled modes to acceleration response.

Fig. 7. The contributions of the higher uncontrolled modes to velocity response.

Fig. 8. The contributions of the higher uncontrolled modes to displacement response.
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7. Active control design of the UCLA Math-Science building

This example addresses the application of the proposed control algorithm in the active control
design of the University of California, Los Angeles (UCLA) Math-Science Addition. The building
located on UCLA campus is a seven-story moment resisting steel frame building which is
separated by 15 cm seismic joint from its adjacent buildings in the north–south (N–S) directions.
At lower level of the building there is a very rigid nuclear reactor structure made of reinforced
concrete, which makes the building be visualized as a five-story structure. Hart and Fang [14]
designed the passive control system for this building using ENIDINE viscous damper devices and
gave a detailed introduction on this building.
The objective of installing an active control system is to reduce the roof displacement of this

building and to avoid impact with its adjacent buildings in the N–S direction. Finite element
method is used to establish the analytic model of the building in the N–S direction in order to
perform the active control design. A three-dimensional finite element model of this building is
developed using SAP2000 computer program as shown in Fig. 9. The natural periods (s) of the
building in the north direction are determined by modal analysis, which are T1 ¼ 0:6791; T2 ¼
0:2217; T3 ¼ 0:1285; T4 ¼ 0:0922; T5 ¼ 0:0905: Assuming unit forces are applied to each level in
the N–S direction and by performing static analysis, the stiffness parameters (105 kN/m) in this

Fig. 9. 3-D finite element model of the building.
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direction are obtained, and the stiffness matrix is given as follows:

K ¼

4:7875 �2:4569 0:4229 �0:0497 �0:0173

�2:4569 3:9408 �2:2843 0:3952 �0:0267

0:4229 �2:2843 3:7947 �2:2291 0:3424

�0:0497 0:3952 �2:2291 3:5582 �1:6837

�0:0173 �0:0267 0:3424 �1:6837 1:3486

2
6666664

3
7777775
: ð53Þ

Lumping all masses to each level obtains the values of lumped mass (105 kg) from the roof to the
lower floors are, m5 ¼ 0:0712; m4 ¼ 0:0870; m3 ¼ 0:148; m2 ¼ 0:2198; m1 ¼ 0:6828: Based on
these stiffness and mass parameters, the natural periods in the N–S direction are re-determined as
T1 ¼ 0:6828; T2 ¼ 0:2198; T3 ¼ 0:1248; T4 ¼ 0:0870; T5 ¼ 0:0712: Comparing these values with
those given by the finite element analysis shows that the analytic model with the stiffness matrix
[Eq. (53)] and the lumped mass captures main properties of the building in the N–S direction.
Evaluation of damping in a structural system poses a difficult problem in structural dynamics,

since damping of a structure is not simply related to any single vibration phenomenon [15].
According to Li et al. [16], the critical damping ratio of the first mode is reasonably assumed to be
1–3% for a steel structure. In order to investigate the damping effects on the structural control
design based on the proposed algorithm, the damping ratio of the first mode is assumed as
x1 ¼ 1% and 2%, respectively, for this building. Based on an assumption of Rayleigh damping,
the damping matrix can be established. Fig. 10 plots the damping ratios of each mode
corresponding to the assumption of x1 ¼ 1%; 2% and 5% of the damping ratio of the first mode.
The earthquake record measured at Rinaldi during the Northridge Earthquake in 1994 is

adopted as the base excitation for the response analysis of the uncontrolled and controlled
structure. Fig. 11 shows the time history of the base excitation, in which the peak ground
acceleration (PGA) is 0:58g and the duration is 15 s. Figs. 12 and 13 show the time history of the
roof displacement of the controlled and uncontrolled structure corresponding to x1 ¼ 1% and
2%, respectively. The maximum roof displacements of the uncontrolled building are 23.39 and
22.07 cm for these two cases, which are much greater than the 15 cm seismic joint. These results
indicate that the building will impact its adjacent buildings while such an earthquake event occurs.

Fig. 10. Damping ratios for different modes.
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Assume the number of control forces is five and the same weight matrices Q; R as chosen in the
Numerical example 2 are used in the control design for this building. The control feedback
parameters are given as follows:
For x1 ¼ 1%:

s1 ¼ 4:718� 103; d1 ¼ 1:053� 104;

G1 ¼ ½422:4; 1328:4; 2108:0; 2707:4; 2927:3�T;

G2 ¼ ½943:0; 2965:7; 4706:4; 6044:4; 6535:4�T: ð54Þ

Fig. 11. Ground acceleration recorded at Rinaldi in 1994 during the Northridge Earthquake.

Fig. 12. Roof displacement (for x1 ¼ 1%).

Fig. 13. Roof displacement (for x1 ¼ 2%).
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For x1 ¼ 2%:

s1 ¼ 4:718� 103; d1 ¼ 1:051� 104;

G1 ¼ ½422:4; 1328:4; 2108:0; 2707:4; 2927:3�T;

G2 ¼ ½942:1; 2960:0; 4697:3; 6032:8; 6522:8�T: ð55Þ

It can be seen from Eqs. (54) and (55) that the effect of damping on the feedback matrices is not
significant. Table 2 presents the peak values of the roof displacement of the controlled and
uncontrolled structure corresponding to x1 ¼ 1% and 2%.
From Table 2, Figs. 11 and 12, it is clear that the roof displacement of the controlled structure

has been reduced significantly and the variation of damping values in the structure does not affect
the control effect when the active control is designed based on the proposed control algorithm.
This practical example indicates that the proposed control algorithm is generally applicable to
vibration control of civil engineering structures.

8. Conclusions

The effects of the modal control forces on the uncontrolled modes are examined for the IMSC
algorithm. Theoretical analysis and numerical simulation study indicate that the contributions of
the modal control forces to the response of the uncontrolled modes can be significant and cannot
be neglected for some cases if the IMSC algorithm is used to design the structural control system.
A new control algorithm—MIMSC has been proposed to eliminate the effects of the modal
control forces. A numerical example is given for a six-story building first. Both the IMSC and
MIMSC algorithms are used to design the control system for this structure. The numerical results
indicate that the new algorithm is more efficient to control the structural vibration than the IMSC
algorithm that may amplify the contributions of the uncontrolled modes to the structural
responses. The computational results also show: (1) it is not necessary to examine the effects of the
control forces to the higher modes if the control design is carried out based on the proposed
algorithm, since such effects have been eliminated, (2) the contributions of the higher modes to the
responses in the controlled structure are the same as those in the corresponding uncontrolled
structure. However, the effects of the modal control forces on the uncontrolled modes should be
carefully examined when the IMSC algorithm is used. In order to verify the effectiveness of the
proposed algorithm, a practical example—active control design of UCLA Math-Science Building
is presented and discussed. Numerical simulation has shown that the active control system
designed by the proposed algorithm can reduce the structural response significantly, and the

Table 2

Roof displacement of the uncontrolled and controlled structure (cm)

Damping Uncontrolled Controlled Reduction (%) Force at roof (kN)

0.01 23.39 12.28 47.50 139.6

0.02 22.07 12.05 45.40 136.7
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variation of structural damping does not affect the control effect. Therefore, it is concluded that
proposed control algorithm is generally applicable to vibration control of civil engineering
structures.
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Appendix A

U ¼

0:1327 0:3678 �0:5178 �0:5507 0:4565 0:2578

0:2578 0:5507 �0:3678 0:1372 �0:5178 �0:4565

0:3678 0:4565 0:2578 0:5178 0:1327 0:5507

0:4565 0:1327 0:5507 �0:2578 0:3678 �0:5178

0:5178 �0:2578 0:1327 �0:4565 �0:5507 0:3678

0:5507 �0:5178 �0:4565 0:3678 0:2578 �0:1327

2
6666666664

3
7777777775
;

Kn ¼ diagðkn

j Þ;

kn

1 ¼ 0:0198� 109; kn

2 ¼ 0:1712� 109; kn

3 ¼ 0:4394� 109; kn

4 ¼ 0:7629� 109;

kn

5 ¼ 1:0675� 109; kn

6 ¼ 1:2836� 109;

Mn ¼ diagðmn

j Þ;

mn

j ¼ mn ¼ 3:456� 105 ðj ¼ 1; 2;y; 6Þ;

o2
1 ¼ 57:2; o2

2 ¼ 495:4; o2
3 ¼ 1271:4; o2

4 ¼ 2207:4; o2
5 ¼ 3088:9; o2

6 ¼ 3714:2;

2x1o1 ¼ 0:1513; 2x2o2 ¼ 0:6677; 2x3o3 ¼ 1:4263; 2x4o4 ¼ 2:3491;

2x5o5 ¼ 3:3347; 2x6o6 ¼ 4:2261:

Appendix B

Proposition. When the control design is carried out based on the MIMSC algorithm, the following
relation must be satisfied:

mXR; ðB:1Þ

where m is the number of the control forces and R is the number of the controlled modes.
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Proof. In the MIMSC, Eq. (36) must be held, then, one has

rankðHG1Þ ¼ rankðUTDG1Þ ¼ R; ðB:2aÞ

rankðHG2Þ ¼ rankðUTDG2Þ ¼ R; ðB:2bÞ

rankðUTÞ ¼ n: Since UT is a non-singular matrix, there are finite elementary matrices Li ði ¼
1; 2;y; rÞ to make the following equation hold:

UT ¼ L1L2?Lr; ðB:3Þ

therefore

UTD ¼ L1L2?LrD: ðB:4Þ

Because the rank of the matrix remains unchanged when it is multiplied by the elementary
matrices, then

rankðUTDÞ ¼ rankðL1L2?LrDÞ ¼ rankðDÞ ¼ m: ðB:5Þ

If moR; then rankðG1Þ ¼ rankðG2Þ ¼ m; so that

rankðUTDG1Þ ¼ moR; ðB:6aÞ

rankðUTDG2Þ ¼ moR: ðB:6bÞ

Eqs. (B.2) are not satisfied, so as to mXR must be satisfied, as claimed. &
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